Computation of the Bernstein Coefficients on Subdivided Triangles

نویسندگان

  • Ralf Hungerbühler
  • Jürgen Garloff
چکیده

We present a procedure for computing the coeecients of the expansion of a bivariate polynomial into Bernstein polynomials over subtriangles. These triangles are generated by partitioning the standard simplex of IR 2. The coeecients are computed directly from the coeecients on the subdivided triangle from the preceding subdivision level. This allows a recursive computation of the coeecients and facilitates the economical computation of bounds for the range of a bivariate polynomial over a given triangle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method

This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...

متن کامل

A numerical study of electrohydrodynamic flow analysis in a circular cylindrical conduit using orthonormal Bernstein polynomials

In this work, the nonlinear boundary value problem in electrohydrodynamics flow of a fluid in an ion-drag configuration in a circular cylindrical conduit is studied numerically. An effective collocation method, which is based on orthonormal Bernstein polynomials is employed to simulate the solution of this model. Some properties of orthonormal Bernstein polynomials are introduced and utilized t...

متن کامل

Bernstein-type operators on a triangle with all curved sides

We construct and analyze Bernstein-type operators on triangles with curved sides, their product and Boolean sum. We study the interpolation properties and approximation accuracy. Using the modulus of continuity we also study the remainders of the corresponding approximation formulas. Finally, there are given some particular cases and numerical examples.

متن کامل

Matrix methods for the simplicial Bernstein representation and for the evaluation of multivariate polynomials

In this paper, multivariate polynomials in the Bernstein basis over a simplex (simplicial Bernstein representation) are considered. Two matrix methods for the computation of the polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coefficients, are presented. Also matrix methods for the calculation of the Bernstein coefficients over subsimplices generated by subd...

متن کامل

A short note on Jacobi-Bernstein connection coefficients

Fast and efficient methods of evaluation of the connection coefficients between shifted Jacobi and Bernstein polynomials are proposed. The complexity of the algorithms is O(n), where n denotes the degree of the Bernstein basis. Given results can be helpful in a computer aided geometric design, e.g., in the optimization of some methods of the degree reduction of Bézier curves.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Reliable Computing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2000